首页> 外文OA文献 >Optimal Resource Allocation in Multicast Device-to-Device Communications Underlaying LTE Networks
【2h】

Optimal Resource Allocation in Multicast Device-to-Device Communications Underlaying LTE Networks

机译:组播设备到设备通信中的最优资源分配   LTE网络的底层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a framework for resource allocations for multicastdevice-to-device (D2D) communications underlaying a cellular network. Theobjective is to maximize the sum throughput of active cellular users (CUs) andfeasible D2D groups in a cell, while meeting a certainsignal-to-interferenceplus- noise ratio (SINR) constraint for both the CUs andD2D groups. We formulate the problem of power and channel allocation as a mixedinteger nonlinear programming (MINLP) problem where one D2D group can reuse thechannels of multiple CUs and the channel of each CU can be reused by multipleD2D groups. Distinct from existing approaches in the literature, ourformulation and solution methods provide an effective and flexible means toutilize radio resources in cellular networks and share them with multicastgroups without causing harmful interference to each other. A variant of thegeneralized bender decomposition (GBD) is applied to optimally solve the MINLPproblem. A greedy algorithm and a low-complexity heuristic solution are thendevised. The performance of all schemes is evaluated through extensivesimulations. Numerical results demonstrate that the proposed greedy algorithmcan achieve closeto- optimal performance, and the heuristic algorithm providesgood performance, though inferior than that of the greedy, with much lowercomplexity.
机译:在本文中,我们为蜂窝网络下面的多播设备到设备(D2D)通信提供了一种资源分配框架。目的是最大化小区中的活动蜂窝用户(CU)和可行的D2D组的总吞吐量,同时满足CU和D2D组的特定信号干扰加噪声比(SINR)约束。我们将功率和信道分配问题表述为一个混合整数非线性规划(MINLP)问题,其中一个D2D组可以复用多个CU的信道,而每个CU的信道可以被多个D2D组复用。与文献中的现有方法不同,我们的公式化和解决方案方法提供了一种有效且灵活的方法来利用蜂窝网络中的无线电资源并与多播组共享它们,而不会造成相互之间的有害干扰。广义弯管分解(GBD)的一种变体用于最佳解决MINLP问题。然后设计了贪婪算法和低复杂度启发式解决方案。所有方案的性能均通过广泛的仿真进行评估。数值结果表明,所提出的贪婪算法可以达到接近最佳的性能,启发式算法虽然性能较贪婪算法差,但性能却很低,复杂度低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号